Functional equivalence of HMGA- and histone H1-like domains in a bacterial transcriptional factor.

نویسندگان

  • Francisco García-Heras
  • S Padmanabhan
  • Francisco J Murillo
  • Montserrat Elías-Arnanz
چکیده

Histone H1 and high-mobility group A (HMGA) proteins compete dynamically to modulate chromatin structure and regulate DNA transactions in eukaryotes. In prokaryotes, HMGA-like domains are known only in Myxococcus xanthus CarD and its Stigmatella aurantiaca ortholog. These have an N-terminal module absent in HMGA that interacts with CarG (a zinc-associated factor that does not bind DNA) to form a stable complex essential in regulating multicellular development, light-induced carotenogenesis, and other cellular processes. An analogous pair, CarD(Ad) and CarG(Ad), exists in another myxobacterium, Anaeromyxobacter dehalogenans. Intriguingly, the CarD(Ad) C terminus lacks the hallmark HMGA DNA-binding AT-hooks and instead resembles the C-terminal region (CTR) of histone H1. We find that CarD(Ad) alone could not replace CarD in M. xanthus. By contrast, when introduced with CarG(Ad), CarD(Ad) functionally replaced CarD in regulating not just 1 but 3 distinct processes in M. xanthus, despite the lower DNA-binding affinity of CarD(Ad) versus CarD in vitro. The ability of the cognate CarD(Ad)-CarG(Ad) pair to interact, but not the noncognate CarD(Ad)-CarG, rationalizes these data. Thus, in chimeras that conserve CarD-CarG interactions, the H1-like CTR of CarD(Ad) could replace the CarD HMGA AT-hooks with no loss of function in vivo. More tellingly, even chimeras with the CarD AT-hook region substituted by human histone H1 CTR or full-length H1 functioned in M. xanthus. Our domain-swap analyses showing functional equivalence of HMGA AT-hooks and H1 CTR in prokaryotic transcriptional regulation provide molecular insights into possible modes of action underlying their biological roles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel mechanism of post-translational modulation of HMGA functions by the histone chaperone nucleophosmin

High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide evidence for a novel modulatory mechanism for HMGA functions. We show that HMGAs are complexed in...

متن کامل

PF1: an A-T hook-containing DNA binding protein from rice that interacts with a functionally defined d(AT)-rich element in the oat phytochrome A3 gene promoter.

Phytochrome-imposed down-regulation of the expression of its own phytochrome A gene (PHYA) is one of the fastest light-induced effects on transcription reported in plants to date. Functional analysis of the oat PHYA3 promoter in a transfection assay has revealed two positive elements, PE1 and PE3, that function synergistically to support high levels of transcription in the absence of light. We ...

متن کامل

HMGA proteins as modulators of chromatin structure during transcriptional activation

High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with dif...

متن کامل

The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria.

Transcriptional factor CarD is the only reported prokaryotic analog of eukaryotic high-mobility-group A (HMGA) proteins, in that it has contiguous acidic and AT hook DNA-binding segments and multifunctional roles in Myxococcus xanthus carotenogenesis and fruiting body formation. HMGA proteins are small, randomly structured, nonhistone, nuclear architectural factors that remodel DNA and chromati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 32  شماره 

صفحات  -

تاریخ انتشار 2009